Error bounds for proximal point subproblems and associated inexact proximal point algorithms

نویسندگان

  • Mikhail V. Solodov
  • Benar Fux Svaiter
چکیده

We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a maximal monotone operator. For variational inequalities, we establish a precise relationship between the regularized gap function, which is a natural error measure in this context, and our new merit function. Some error bounds are derived using both merit functions for the corresponding formulations of the proximal subproblem. We further use the regularized gap function to devise a new inexact proximal point algorithm for solving monotone variational inequalities. This inexact proximal point method preserves all the desirable global and local convergence properties of the classical exact/inexact method, while providing a constructive error tolerance criterion, suitable for further practical applications. The use of other tolerance rules is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Inexact Variable Metric Proximal Point Algorithms

For the problem of solving maximal monotone inclusions, we present a rather general class of algorithms, which contains hybrid inexact proximal point methods as a special case and allows for the use of a variable metric in subproblems. The global convergence and local linear rate of convergence are established under standard assumptions. We demonstrate the advantage of variable metric implement...

متن کامل

An Accelerated Inexact Proximal Point Algorithm for Convex Minimization

The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the iteration-complexity of this...

متن کامل

A Comparison of Rates of Convergence of Two Inexact Proximal Point Algorithms

We compare the linear rate of convergence estimates for two inexact proximal point methods. The first one is the classical inexact scheme introduced by Rockafellar, for which we obtain a slightly better estimate than the one given in [16]. The second one is the hybrid inexact proximal point approach introduced in [25, 22]. The advantage of the hybrid methods is that they use more constructive a...

متن کامل

Fixed-Point Methods for a Certain Class of Operators

We introduce in this paper a new class of nonlinear operators which contains, among others, the class of operators with semimonotone additive inverse and also the class of nonexpansive mappings. We study this class and discuss some of its properties. Then we present iterative procedures for computing fixed points of operators in this class, which allow for inexact solutions of the subproblems a...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2000